
How to develop a system that

leverages sensors to avoid

obstacles.

Jonas Dolezal

Lumiere Education - Individual Research Program

August 23, 2024

Contents

1 Introduction 2

2 Literature Review 3

3 System Design 4

3.1 Hardware . 4

3.2 Software . 6

3.3 Combination . 7

4 Methods 9

5 Experiment 15

6 Discussion 19

7 Conclusion 20

8 References 22

9 Appendices 22

1

1 Introduction

In today’s rapidly evolving and increasingly integrating world of AI, an

important counterpart must not be forgotten: vehicles. Most systems of AI

we use today are ones used in browsers and apps, but to show real impact

in the world, vehicles and robots have to be implemented and used. One

distinction between challenges these two areas have to face is the presence of

real world obstacles and bumps on a road. Vehicles have to adapt to the world

we live in, while online chatbots create a comfortable world for themselves.

These obstacles for real world vehicles can oftentimes pose an important threat

that cannot be overlooked. Have you ever seen a robot that got stuck on a

curb and couldn’t move on? Quite a frequent occurrence. For these reasons

vehicles must be able to see around them and act accordingly, avoiding any

potential threats and preventing any sort of malfunction. Perception systems

must reliably detect and avoid obstacles as they move from point A to point B,

in order to prevent any damage from collisions. This makes obstacle avoidance

crucial and fundamental to include in any system. This paper attempts to

showcase how such a fundamental concept can be done through the use of

sensors, their fusing and vector field histograms. Another key aim of this

paper is to show how this goal can be achieved with as small of a budget as

possible. Since we can expect robots to become a hit in the tech world (as

they already are), we can expect many firms to try and achieve the lowest cost

possible, in order to maximise their supply potential. This paper will attempt

to show a low-cost, safe and reliable solution as to how such a crucial task

can be achieved. The low-cost nature of this investigation is important for

2

many reasons: The robot production can be more scaled and larger, the low

cost allows a swifter integration into less economically developed countries

and possibly accelerate innovation as funds can be investigated elsewhere.

Effective systems can be crucial in delivering life saving help in environments

it hasn’t seen before, like medical supplies or basic human resources. This

paper aims to showcase the reliability and low cost of a system capable of

obstacle avoidance through the use of vector field histograms. Also this paper

aims to inspire another generation of developers excited to take these ideas

further and prosper in the ever-expanding world of tech and AI.

2 Literature Review

Existing literature has a strong focus on alternative ways to solve the men-

tioned problem. It focuses greatly on the use of several types of sensors

,including LIDAR, cameras, ultrasonic sensors, and infrared sensors, each

with its own distinct advantages and limitations.

By using several sensors, many studies focus on a different kind of fusion

than the fusion introduced here. Existing literature discusses how different

information from different sensors can be used to achieve obstacle avoidance

and general perception of surroundings. This method significantly improves

the performance of autonomous systems by leveraging the strengths of each

sensor type.

Despite these clear advantages, most literature ends up describing high-cost

solutions, often using expensive sensors, like LIDAR, and complex algorithms.

This paper distinguishes itself by focusing on accessibility and low-cost so-

3

lutions, a relatively unexplored area in current literature. By prioritizing

affordability, this paper aims to make obstacle avoidance and perception sys-

tems more accessible to a broader audience, including hobbyists, developers

or companies with limited budgets, seeking to lower costs as much as possible.

3 System Design

Figure 1: Vehicle Parts Diagram

3.1 Hardware

The hardware of this system will be centred around the Arduino Uno R3.

This will be the brain of the vehicle and is in charge of coordinating the

system’s inputs and outputs. This has been chosen because of its relatively

low cost, widespread use, and ease to implement, as it is a standard part used

in many projects and even industrial manufacturing.

4

The component responsible for detection and perception of the surround-

ings will be the ultrasonic sensor HC-SR04. There will be more of these

sensors, allowing the system to see in more directions, enhancing the ability

to detect and avoid obstacles. These sensors have been selected because of

their very low cost and simplicity. These sensors emit ultrasonic waves and

measure the time it takes for the waves to bounce back from an obstacle,

which is then used to calculate the distance to the obstacle. Therefore, they

give one simple, frequently updated reading of how far an object is in one

specific direction.

To move, the system uses simple DC motors, which can also be seen in

many other small-scale vehicles. These motors have been chosen for their low

cost and ease of connection with the Arduino. Coupled with these DC motors

are motor drivers L298N, which allow the Arduino to control which motor is

on at what time, how fast it’s going, allowing the vehicle to accelerate, stop,

and make turns, all crucial for simple steering and control of a vehicle.

The vehicle’s chassis is a basic, lightweight, wooden frame designed to

house the Arduino, sensors, motor driver, and power supply. The power supply,

typically a set of AA batteries or a rechargeable battery pack, provides the

necessary power for the entire system.

Along with all of the parts mentioned, a breadboard is being used to

distribute the different connections to more places, as the Arduino itself

doesn’t have enough connectors to accommodate each connection of each part

attached to it. This means that the breadboard is distributing 5V power and

the ground connections as well.

All of the components mentioned above are low cost, easily accessible,

5

and widespread parts used very often in creation of small-scale vehicles. This

aligns with the aim of this paper, as it allows for scalability and accessibility

of such a system.

3.2 Software

The code for this vehicle can be found in Appendix 1. The code starts

by setting predetermined parameters, such as where each connection from

different parts leads into the Arduino and some constants such as the motor

speed and detection threshold for the ultrasonic sensors. The language used

is the Arduino modified version of C, making it a compilable language. The

structure of the code consists of one main loop running again and again several

times a second and within that loop there are many functions being run.

Regardless of the vehicle situation, the ultrasonic reading function is called.

This function will read the data from the ultrasonic sensors and store them

in variables. Then, depending on the values that the sensors read, the vehicle

makes a decision and calls one of four functions: Move forward; instructing

the vehicle to move forward, Turn Right; temporarily setting the DC motors

on the right side to move in reverse, Turn Left; temporarily setting the DC

motors on the left to move in reverse and Stop Moving; a function that will

stop all motors immediately, wait for a little moment and then move back a

little bit.

6

3.3 Combination

The two systems described above work separately and on different levels.

They of course have to be effectively combined to create a system that can

achieve obstacle avoidance with what hardware it has and what software it

can implement. A few obstacles had to be overcome in order to effectively

combine these two systems. As mentioned previously, the Arduino itself has

a limited number of ports for parts to connect to. This means that there had

to be an innovative solution for using these ports effectively. One important

thing to remember with ultrasonic sensors is the fact that they have four

pins that each need to be connected. They include: one providing power,

another a ground connection, a trigger pin and an echo pin. This means that

if there was no combining of outputs from the Arduino, ultrasonic sensors

alone would need twelve pins, leaving minimal room for motor drivers and

battery pack connection. The obvious easy fix is to use one 5V output for

all of the ultrasonic sensors, providing them all with power and one ground

connection, completing a circuit, allowing each of the sensors to work. This

easy fix brings down the number of needed ports for ultrasonic sensors down

to eight. This is, however, still too many. The main improvement is the

combination of the trigger pin. One important thing to remember is that the

ultrasonic sensor works in the way that it receives a ”trigger” from the trigger

pin, signalling that the sensor should send out the ultrasonic wave. Then, it

will wait for the signal to come back and then will ”echo” the time taken for

the signal to bounce off an object and to come back through the echo pin

away. This means that it is crucial for each echo pin to be connected to a

7

different pin on the Arduino. In the case of the trigger pin, the sensors can

share one pin, wired through breadboard, for all the sensors, as each trigger

isn’t exclusive to one ultrasonic sensor. This is a major improvement for

the number of pins that the ultrasonic sensors take up on the Arduino. One

consideration that is important to remember when writing code for this is

that the code will be looking for an echo for a set amount of time by default,

but this might not always work because an ultrasonic sensor might take a

different amount of time to respond, because the signal it sends out might be

travelling for longer, as it has to travel. There is an easy fix for that and it

is that the code can wait for a long enough period of time to allow even the

longest, maximum signals to come back.

Another thing that can be considered as combining two systems is com-

bining the different power outputs. The battery pack itself provides 12V,

but not everything in the system can handle so many volts. The Arduino

itself can send out 5V outputs, which are used for the ultrasonic sensors. The

conversion happens in the L298N Motor driver. The battery pack connects to

the power rails in the Arduino and both of the motor drivers are connected

to the rails. The Arduino is not powered using the battery pack directly, but

rather takes a 5V output from the front motor driver. The L298N motor

drivers prove themselves to be particularly useful and cost effective, as they

can take in a 12V input, power the 2 DC motors they might be connected

to and then output a 5V voltage back to an Arduino. Another thing that is

important is that the Arduino and the motor driver have to have the same

ground connection, meaning more connections have to be made to ensure

safety.

8

4 Methods

This section describes how obstacle avoidance is actually achieved. Having

discussed the vehicle’s construction, we can now make an attempt at the main

aim of this paper. This section will be focused on vector field histograms and

how those can be used to our advantage to make a system capable of obstacle

avoidance. Essentially, what we get from the ultrasonic sensor readings are

eyes that tell us how far we can go in each direction we measure without

crashing. Of course, the sensors don’t see in every direction, as there is a

limited number of them, but for the purpose of driving forward and avoiding

any potential dangers, they are sufficient. The sensors themselves are placed

in such an orientation, that one looks forward and the other two look 45 θ to

each side.

Figure 2: Sensor Separation

9

To have this optimal angle, there are a few considerations that have to be

considered. One being that if this angle is too small, the sensors won’t be

able to detect many different objects. This is because each of these sensors

has a detection cone with angle ϕ. Refer to the diagram below.

Figure 3: Sensor Vision Angle

If these sensors are placed too close to each other (θ is small), the cones

of the sensors will overlap, meaning that there will be a loss of information.

Also, if there happens to be an object at that angle, the vehicle will want to

stop rather than turn away, essentially deeming the sideways sensors to be

useful for only very specific objects placed at specific angles to the sides of

the vehicle. This same problem also occurs when the angle between the edges

of the cones is too small. When there is an object in the cone of the sideways

sensor, the code will instruct the vehicle to turn to one side. This however

10

takes some time and the vehicle itself will have momentum and won’t be able

to stop immediately. This might not seem like a big problem, but because

the vehicle has momentum from driving forward, it will drift further before

it can turn and the object will not appear in the sensor cone of the vented

sensor, forcing the vehicle to stop and retreat, rather than turn away and

keep driving. Essentially, the objects sideways would be detected too late.

Figure 4: Vehicle Parts Diagram

On the flip side, the sensors can be too far from each other (θ is large).

This also poses a problem, because the vehicle could be approaching an object

or a wall at such an angle that it isn’t within detection thresholds of any of

the sensors and ”sneaks through”. This is very important for things like poles

or objects, as they would truly be unnoticed, until the vehicle would crash.

11

Figure 5: Small Theta Diagram

Therefore there has to be a centre point found and this proved to be

around the 45 degree mark.

θ = 45

Figure 6: Large Theta Diagram

Now that the vehicle has relevant and useful data from the sensors, we can

get to where this vehicle makes decisions. A lot of this decision making had

to be fine tuned in real life, but it follows a general pattern. The sensors keep

reading until one of them detects a distance lower than a predetermined value

of the detection threshold. When this condition is met, the vehicle makes

12

either a turn, or a stop, as described above. This ensures that the vehicle

won’t crash, as because of the optimal placement of the sensors, we can avoid

any obstacle that might cause a problem.This then allows the vehicle to turn

and manoeuvre itself so that all the sensors see objects further than ones

that would cause danger. Now the vehicle should be able to navigate through

different courses without crashing and colliding with any barriers.

There still however remains one very important question. As is with most

predetermined values set by a creator, there has to be a reason as to why it

is set at that. The detection threshold has been mentioned above, but there

was no real value for it and the question now becomes apparent: What value

should it be set at? Let’s repeat our flow of thought similar to above with

extremes.

If the detection threshold would be too small, the sensors wouldn’t trigger

any sort of turn or stop until the wall or object got very close. This is an

issue, as usually when the vehicle is already so close to the object, it will have

some momentum and won’t be able to stop in time, leading to a collision:

something we are not looking for.

The other extreme is that the detection threshold would be set way too

high. This would make the vehicle very ”careful”, meaning it would start

turning away and stopping when it sees an object, which wouldn’t pose much

of a threat, far away. As it will come to show, this weariness will mean that

the vehicle won’t even be able to navigate a track at all.

Therefore we have determined our extremes and it leaves us with at-

tempting to find the optimal threshold distance. We will be conducting an

experiment to try and find the optimal threshold for a track set up.

13

Figure 7: Large Detection Threshold

One last consideration to take into account is the fact that we might not

be looking for an optimal threshold distance but rather an optimal detection

threshold as a ratio to the width of the track. The ratio might be significant,

because the track widths can vary in real world situations and if the detection

threshold is set at some distance and the track width increases, the vehicle

will seem to stick to one wall. The detection threshold, seen as a ratio to the

width of the track, allows the vehicle to be entered towards the middle of the

track, potentially making the journey safer because of less imminent dangers

that the walls pose.

Figure 8: Small Detection Threshold Ratio

14

5 Experiment

Detection Threshold Optimisation Experiment

Control Variables: Track

Dependent Variables: Time taken, success rate, number of collisions

Independent Variable: Detection threshold

This experiment aimed to find the most optimal detection threshold ratio

for a small cart, aiming to minimize the time taken to pass through a constant

track, reduce the number of collisions with barriers, and maximize the success

rate of passing through the course. The track has a set start point and end

point, which were used to measure the time taken for a ride. The stopwatch

was started when the vehicle first started moving and stopped when the

vehicle touched the final area. For each detection threshold, 7 repetitions

were performed, recording all important information during the run. This

data was then averaged or summed and analyzed.

Figure 9: Test Track

15

Hypothesis:

From this experiment, we aim to observe clear trends. As the detection

threshold increases (and thus the threshold ratio), the number of collisions

should decrease, as the robot will become more “careful” and will try stopping

earlier to avoid collisions. The time taken to pass the course should slightly

decrease and then plateau, because as the threshold increases, the reduced

number of collisions is expected to make the route through the track more

efficient, resulting in a shorter time. However, if the detection threshold

increases too much, we anticipate the robot will become excessively “careful”

and may fail to complete the track. Consequently, the success rate should

also decrease.

The raw data can be found in Appendix 2.

From this data, we can plot each parameter as a function of the detection

threshold and obtain the following results:

Figure 10: Time vs Detection
Threshold Plot

Figure 11: Collisions vs Detection
Threshold Plot

16

Figure 12: Success Rate vs Detection Threshold Plot

Analysis

From the plots above there are several observations we can make. First

let’s have a look at the success rate (Figure 12.). We can see that the robot

successfully passed the track for most of the small detection thresholds, but

then started occasionally failing once we got to the higher thresholds. This

can be explained by the phenomenon that we described earlier. The robot

becomes too “careful”. When the robot tries to drive through the track it sees

a wall from far away and immediately starts turning away from it. Through

this though it might turn to see a wall closer and turn to the other side away

from the other wall. Eventually the robot ends up in this loophole where it

ends up just “wiggling” left and right and not advancing forward at all. That

is why the success rate dropped towards the end.

To further understand the success rate, we have to have a look at the

number of collisions the robot had (Figure 11). There is a clear downwards

trend as we have hypothesised. This is because the vehicle was always given

more time to react to a wall as the detection threshold increased, therefore

meaning a very high number of collisions when the detection threshold was low.

17

Combined with the success rate we can see that at low detection thresholds

the robot still was successful, but with lots of collisions, meaning that it

stumbled its way through the track hitting many walls.

Finally looking at the time taken (Figure 11) we can see that despite the

very spiky nature of the graph there is a minimum at around 40 cm. The

time values do change quite a bit for different thresholds, meaning that the

time taken is very sensitive to other factors, which could possibly include

the angle of release, current state of the track and despite my efforts to keep

them controlled, they might have moved by small amounts, possibly changing

the time taken.

Overall we can draw a conclusion for this experiment and the aim was to

find the optimal detection threshold ratio. Overall, we can state that the

optimal ratio could be set at 40cm, or slightly less, to still gain the benefits of

the faster time taken, but to not transfer into the lower success rate that can

be observed at the next detection threshold. Therefore around 38 is optimal.

This however isn’t the thing we were looking for. The detection threshold

ratio to the width of the track is a more useful value, as then the track and

vehicle can be scaled. The track width was 70cm, meaning that the ratio of

38cm to 70cm gives us 0.543. Therefore we can assume that the detection

threshold should always be set at roughly 54

18

6 Discussion

This paper isn’t perfect. There are obviously many things that could have

been done better and many factors that could be considered but weren’t.

Some of these are further explanations, notes, and comments on what has

been shown so far.

• Momentum of Cars: At the detection threshold of 35 cm, the car

often had at least one collision. This was the same collision in every

run. It was caused because the car had a run-up into the first turn and,

when it wanted to stop, it still had momentum and hit the wall. Within

the track, it mostly did not crash anymore, indicating that this might

be a good detection threshold, but only if the car was a bit slower.

• Sensor Vision: Another possible consideration is that the sensors are

placed at some height above the ground and don’t see the full height of

the car itself. This could lead to them not detecting curbs or low-placed

objects, or missing objects suspended in the air, which could pose a

threat to the components. A potential solution could be to make the

car slimmer or to increase the number of sensors.

• Hardware/Software Improvement: To improve the system and

reduce the number of pins the sensors use on the Arduino, one Echo

pin could be used. This would require the ultrasonic sensors to send

information back in sequence rather than simultaneously. However,

this still needs to maintain a quick response time and address issues

that can arise from delayed signals. This improvement would allow for

19

more ultrasonic sensors to be added, enhancing the ability for obstacle

avoidance.

7 Conclusion

From this paper we can gain a valuable insight into what it means to construct

a simple vehicle avoidance system, at a low cost. There has been demonstrated

a method of what to use and how to calibrate a system like this for individuals

or groups to take away and recreate, adding their own capabilities and

improving upon the system.

This paper aimed to showcase a system of obstacle avoidance while main-

taining a low cost. Obstacle avoidance has been clearly achieved, demonstrated

by the fact that the vehicle itself had a high success rate during the experiment

to find the optimal detection threshold. Also a question of safety was raised

earlier and this goal could also be seen as achieved, because the vehicle at

the optimal detection threshold achieved no collisions with its surroundings,

proving that the goal of not damaging itself, its contents and the surroundings

was achieved. The secondary goal of this research paper was to build this

system at a low cost. This has also been achieved. Of course, the term “low

cost” is subjective, but in comparison to other research papers showcasing

similar things, this one has achieved a much lower cost, using easy to access,

cheap components for no more than a few tens of dollars. The exact prices

are not mentioned here and this is because they can change from region to

region and highly depend on how the parts are delivered, what quantities etc.

Overall, this research paper has effectively achieved its goals and proved

20

that systems capable of obstacle avoidance while maintaining a low cost are

possible.

21

8 References

• Zhang, J., Hou, J., Hu, J., Zhao, C., Xu, Z., and Cheng, C., 2021. UGV

autonomous driving system design for unstructured environment. Pro-

ceedings of the 40th Chinese Control Conference, July 26-28, Shanghai,

China.

• Guastella, D.C. and Muscato, G., 2021. Learning-based methods of per-

ception and navigation for ground vehicles in unstructured environments:

A review. Sensors, 21, p.73. Available at: https://dx.doi.org/10.3390/s21010073.

• Borenstein, J. and Koren, Y., 1991. The vector field histogram—Fast

obstacle avoidance for mobile robots. IEEE Transactions on Robotics

and Automation, 7(3), pp.278-288.

9 Appendices

1

2 const int trigPin = A0; // Trigger pin

3 const int echoPin1 = A1; // Echo pin for Sensor 1

4 const int echoPin2 = A2; // Echo pin for Sensor 2

5 const int echoPin3 = A3; // Echo pin for Sensor 3

6

7 long duration1 , duration2 , duration3;

8 int distance1 , distance2 , distance3;

9

10 // Define motor control pins for L298N

11 const int ENA1 = 3; // PWM pin for Motor 1

12 const int IN1_1 = 2;

13 const int IN2_1 = 4;

14

15 const int ENA2 = 6; // PWM pin for Motor 2

16 const int IN1_2 = 5;

22

17 const int IN2_2 = 7;

18

19 const int ENA3 = 10; // PWM pin for Motor 3

20 const int IN1_3 = 8;

21 const int IN2_3 = 9;

22

23 const int ENA4 = 11; // PWM pin for Motor 4

24 const int IN1_4 = 12;

25 const int IN2_4 = 13;

26

27

28 int detection_threshold = 38; // cms

29

30

31 int wheel_speed = 70;

32

33 void setup () {

34 Serial.begin (9600);

35 pinMode(trigPin , OUTPUT);

36 pinMode(echoPin1 , INPUT);

37 pinMode(echoPin2 , INPUT);

38 pinMode(echoPin3 , INPUT);

39

40 pinMode(ENA1 , OUTPUT);

41 pinMode(IN1_1 , OUTPUT);

42 pinMode(IN2_1 , OUTPUT);

43

44 pinMode(ENA2 , OUTPUT);

45 pinMode(IN1_2 , OUTPUT);

46 pinMode(IN2_2 , OUTPUT);

47

48 pinMode(ENA3 , OUTPUT);

49 pinMode(IN1_3 , OUTPUT);

50 pinMode(IN2_3 , OUTPUT);

51

52 pinMode(ENA4 , OUTPUT);

53 pinMode(IN1_4 , OUTPUT);

54 pinMode(IN2_4 , OUTPUT);

55

56 Serial.println("Setup␣Complete");

57 }

58

59 int measureDistance(int trigPin , int echoPin) {

23

60 long duration;

61 digitalWrite(trigPin , LOW);

62 delayMicroseconds (2);

63

64 digitalWrite(trigPin , HIGH);

65 delayMicroseconds (10);

66 digitalWrite(trigPin , LOW);

67

68 duration = pulseIn(echoPin , HIGH , 70000); //70ms

69

70 if (duration == 0) {

71 Serial.println("No␣echo␣received");

72 return -1;

73 } else {

74 int distance = duration * 0.034 / 2;

75 Serial.print("Distance:␣");

76 Serial.print(distance);

77 Serial.println("␣cm");

78 return distance;

79 }

80 }

81

82 void moveForward () {

83 Serial.println("Moving␣Forward");

84 analogWrite(ENA1 , wheel_speed);

85 digitalWrite(IN1_1 , LOW);

86 digitalWrite(IN2_1 , HIGH);

87 analogWrite(ENA2 , wheel_speed);

88 digitalWrite(IN1_2 , LOW);

89 digitalWrite(IN2_2 , HIGH);

90 analogWrite(ENA3 , wheel_speed);

91 digitalWrite(IN1_3 , LOW);

92 digitalWrite(IN2_3 , HIGH);

93 analogWrite(ENA4 , wheel_speed);

94 digitalWrite(IN1_4 , LOW);

95 digitalWrite(IN2_4 , HIGH);

96 }

97

98 void turnLeft () {

99 Serial.println("Turning␣Left");

100 analogWrite(ENA1 , wheel_speed);

101 digitalWrite(IN1_1 , LOW);

102 digitalWrite(IN2_1 , HIGH);

24

103 analogWrite(ENA2 , wheel_speed);

104 digitalWrite(IN1_2 , HIGH);

105 digitalWrite(IN2_2 , LOW);

106 analogWrite(ENA3 , wheel_speed);

107 digitalWrite(IN1_3 , LOW);

108 digitalWrite(IN2_3 , HIGH);

109 analogWrite(ENA4 , wheel_speed);

110 digitalWrite(IN1_4 , HIGH);

111 digitalWrite(IN2_4 , LOW);

112 delay (100);

113 }

114

115 void turnRight () {

116 Serial.println("Turning␣Right");

117 analogWrite(ENA1 , wheel_speed);

118 digitalWrite(IN1_1 , HIGH);

119 digitalWrite(IN2_1 , LOW);

120 analogWrite(ENA2 , wheel_speed);

121 digitalWrite(IN1_2 , LOW);

122 digitalWrite(IN2_2 , HIGH);

123 analogWrite(ENA3 , wheel_speed);

124 digitalWrite(IN1_3 , HIGH);

125 digitalWrite(IN2_3 , LOW);

126 analogWrite(ENA4 , wheel_speed);

127 digitalWrite(IN1_4 , LOW);

128 digitalWrite(IN2_4 , HIGH);

129 delay (100);

130 }

131

132 void stopMoving () {

133 Serial.println("Stopping");

134 analogWrite(ENA1 , 0);

135 digitalWrite(IN1_1 , LOW);

136 digitalWrite(IN2_1 , LOW);

137 analogWrite(ENA2 , 0);

138 digitalWrite(IN1_2 , LOW);

139 digitalWrite(IN2_2 , LOW);

140 analogWrite(ENA3 , 0);

141 digitalWrite(IN1_3 , LOW);

142 digitalWrite(IN2_3 , LOW);

143 analogWrite(ENA4 , 0);

144 digitalWrite(IN1_4 , LOW);

145 digitalWrite(IN2_4 , LOW);

25

146

147 delay (1000);

148 Serial.println("Reversing");

149 analogWrite(ENA1 , wheel_speed);

150 digitalWrite(IN1_1 , HIGH);

151 digitalWrite(IN2_1 , LOW);

152 analogWrite(ENA2 , wheel_speed);

153 digitalWrite(IN1_2 , HIGH);

154 digitalWrite(IN2_2 , LOW);

155 analogWrite(ENA3 , wheel_speed);

156 digitalWrite(IN1_3 , HIGH);

157 digitalWrite(IN2_3 , LOW);

158 analogWrite(ENA4 , wheel_speed);

159 digitalWrite(IN1_4 , HIGH);

160 digitalWrite(IN2_4 , LOW);

161 }

162

163 void loop() {

164 distance1 = measureDistance(trigPin , echoPin1);

165 delay(wheel_speed);

166

167 distance2 = measureDistance(trigPin , echoPin2);

168 delay(wheel_speed);

169

170 distance3 = measureDistance(trigPin , echoPin3);

171 delay(wheel_speed);

172

173 if (distance1 == -1 || distance2 == -1 || distance3 ==

-1) {

174 stopMoving ();

175 } else if (distance2 < (detection_threshold * 0.8)) {

176 Serial.println("Stopping");

177 stopMoving ();

178 } else if (distance1 < distance3) {

179 turnLeft ();

180 } else if (distance3 < distance1) {

181 turnRight ();

182 } else {

183 moveForward ();

184 }

185

186 delay (100);

26

187 }

Listing 1: Arduino Code for Motor Control and Distance Measurement

Listing 2: Raw Experiment Data

27

